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1. Introduction to Term Structure Models 

Interest rate derivatives are instruments that are in some way contingent on interest 

rates (bonds, swaps or just simple loans that start at a future point in time). Such 

securities are extremely important because almost every financial transaction is 

exposed to interest rate risk — and interest rate derivatives provide the means for 

controlling this risk. In addition, same as with other derivative securities, interest rate 

derivatives may also be used to enhance the performance of investment portfolios. The 

interesting and crucial question is what are these instruments worth on the market and 

how can they be priced. 

In analogy to stock options, interest rate derivatives depend on their underlying, i.e. 

the interest rate. Bond prices depend on the movement of interest rates, so do bond 

options. The question of pricing contingent claims on interest rates comes down to the 

question of how the underlying can be modeled. Future values are uncertain, but with 

the help of stochastic models it is possible to get information about possible interest 

rates. The tool needed is the term structure — the evolution of spot rates over time. One 

has to consider both, the term structure of interest rates and the term structure of 

interest rate volatilities. Term structure models, also known as yield curve models, 

describe the probabilistic behavior of all rates. They are more complicated than models 

used to describe a stock price or an exchange rate. This is because they are concerned 

with movements in an entire yield curve — not with changes to a single variable. As 

time passes, the individual interest rates in the term structure change. In addition, the 

shape of the curve itself is liable to change. 

We have to distinguish between equilibrium models and no-arbitrage models. In an 

equilibrium model the initial term structure is an output from the model, in a no-

arbitrage model it is an input to the model. Equilibrium models usually start with the 

assumption about economic variables and derive a process for the short-term risk-free 

rate r.1 They then explore what the process implies for bond prices and option prices. 

The disadvantage of equilibrium models is that they do not automatically fit today’s 

term structure. No-arbitrage models are designed to be exactly consistent with today’s 

term structure. The idea is based on the risk-neutral pricing formula when a bond is 

valued over a single period of time with binominal lattice. 

 

                                            
1 When r(t) is the only source of uncertainty for the term structure, the short rate is modeled by  
One-Factor Models. 
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2. Term Structure Equation for Continuous Time 

In our paper we prefer to use discrete time models, because the data available is 

always in discrete form and easier to compute. The continues time models do not 

provide us with useful solutions in the BDT world 2 , nevertheless they are the 

fundamental and older part of interest rate derivatives. Continuous time models are 

more transparent and give a better understanding of the BDT model, therefore we here 

give a short general introduction into this material. 

We assume that the following term structure equation3 is given: 

( ) ( ) ( ) 0, 2
2
1, =⋅−⋅⋅+⋅+ Π trPrtPrtPP rrrt σµ  

with 

t
P

Pt
∂
∂= ; 

r
P
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∂
∂= ; 

r

P
Prr

∂
∂= 2

2
 

We have a second order partial differential equation. It is of course of great importance 

that the partial differential equation above leads to solutions for interest derivatives. 

Not every Ito process can solve the term structure above.  

It turns out that some Ito processes which are affine term structure models lead to a 

solution. 

The zero bond price in time t to maturity T has the following form: 

 

( ) ( )eTtP trTtBTtA ⋅−= ),(),(,   where   t < T 

The drift and volatility have the general form: 

( ) ( ) ( ) ( )thtrtgrt +⋅≡Π ,µ  

( ) ( ) ( ) ( )tdtrtcrt +⋅≡,σ  

If the price P(t,T) above is given, we can derive Pr, Prr and Pt as the following: 
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2  The continuous time models can lead to closed form mathematical solutions. But in the BDT case, we 
cannot find such a solution.  
3 Rudolf (2000) pp.38-40 
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After substituting these three variables into the term structure equation we get 

( ) ( )[ ] ( ) ( ) ( )
0

2
,

,,1, 2
2

=⋅+⋅−⋅+− Π σµ
TtBtTtBtrTtBTtA ttt  

Now we can also substitute µΠ and σ  into the equation above and get 
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The equation above holds for all t, T and r under the following condition: 

( ) ( ) ( )
( )
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=⋅+⋅− td
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( ) ( ) ( )
( )
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The boundary conditions for solving this zero bond are: 

( ) 1, =TTP  

( ) 0, =TTA  

( ) 0, =TTB  

The reason is that we know the price of the zero bond at maturity, so A(T,T) and B(T,T) 

must be zero. These two equations above lead to the Riccati-Problem for solving two 

non stochastic partial differential equations. 

 

A general solution method for solving the term structure equation with an affine 

interest model could be to 

1. Compare the coefficients ( )rt,Πµ  and σ  with the stochastic short rate process 

to identify the coefficients g(t), h(t), c(t) and d(t), 

2. Substitute the coefficients into the two Riccati equations 

3. Solve the two second order partial differential equations to get A(t,T) and B(t,T) 
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3. Overview - Basic Processes of One-Factor Models 
 
 

Table I: Some basic single-factor models in continuous time4 

Vasicek(1977) 

[Equilibrium model, Short rate model] 

( )[ ] ( )tdzdttradrt
Π⋅+⋅⋅−Φ= σ  

dr = a(b-r) dt + σ dz 

Cox Ingersoll Ross (1985) 

[Equilibrium model, Short rate model] 

( )[ ] ( )tdzrdttradrt
Π⋅⋅+⋅⋅−Φ= σ  

dr = a(b-r) dt + c r dz 

Ho Lee (1986) 

[First No-Arbitrage model] 

( )[ ] ( )tdzrdttTFdr tt
Π⋅⋅+⋅⋅+= σσ 2,0  

dr = θ(t) dt + σ dz 

Black Derman Toy (1990) 

[No-Arbitrage model,  

lognormal short rate model] 

( ) ( ) ( )tdztdtta
r
drt Π⋅+⋅= σ  

d ln r = θ(t) dt + σ dz 

Hull White (1990) 

[No-Arbitrage model] 

( ) ( ) ( )[ ] ( ) ( )tdztdttrtatdrt
Π⋅+⋅⋅−Φ= σ  

dr = [θ(t) - ar] dt + σ dz 

Black Karasinski (1991) 
( ) ( ) ( )[ ] ( ) ( )tdztdttrtatrd t

Π⋅+⋅⋅−Φ= σlnln  

d ln r = (θ - a ln r) dt + σ dz 

Heath Jarrow Morton (1992) 

[renown as a bridge between all term 

structure models; Forward rate model] 

( ) ( ) ( ) ( )tdzTtdtTtTtdF FF
ΠΠ ⋅+⋅= ,,, σµ  

                                            
4 See Rudolf (2000), p.64 and Clewlow, Strickland (1998) 
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4. The Black Derman and Toy Model (BDT) 

 4.1. Characteristics 
 
The term structure model developed in 1990 by Fischer Black, Emanuel Derman and 

William Toy is a yield-based model which has proved popular with practitioners for 

valuing interest rate derivatives such as caps and swaptions etc. The Black, Derman and 

Toy model (henceforth BDT model) is a one-factor short-rate (no-arbitrage) model — all 

security prices and rates depend only on a single factor, the short rate — the annualized 

one-period interest rate. The current structure of long rates (yields on zero-coupon 

Treasury bonds) for various maturities and their estimated volatilities are used to 

construct a tree of possible future short rates. This tree can then be used to value 

interest-rate-sensitive securities.  

Several assumptions are made for the model to hold: 

• Changes in all bond yields are perfectly correlated. 

• Expected returns on all securities over one period are equal. 

• The short rates are log-normally distributed 

• There exists no taxes or transaction costs. 

As with the original Ho and Lee model, the model is developed algorithmically, 

describing the evolution of the term structure in a discrete-time binominal lattice 

framework. Although the algorithmic construction is rather opaque with regard to its 

assumptions about the evolution of the short rate, several authors have shown that the 

implied continuous time limit of the BDT model, as we take the limit of the size of the 

time step to zero, is given by the following stochastic differential equation5 : 

dztdttr
t

tt
ttrd )()(ln

)(
)(

)()(ln σ
σ

σθ +⎥
⎦

⎤
⎢
⎣

⎡ ∂∂
−=  

This representation of the model allows to understand the assumption implicit in the 

model. The BDT model incorporates two independent functions of time, θ(t) and σ(t), 

chosen so that the model fits the term structure of spot interest rates and the term 

structure of spot rate volatilities. In contrast to the Ho and Lee and Hull and White 

model, in the BDT representation the short rates are log-normally distributed; with the 

resulting advantage that interest rates cannot become negative. An unfortunate 

consequence of the model is that for certain specifications of the volatility function σ(t) 

                                            
5 See Clewlow and Strickland (1998), p.221 
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the short rate can be mean-fleeing rather than mean-reverting. It is popular among 

practitioners, partly for the simplicity of its calibration and partly because of its 

straightforward analytic results. The model furthermore has the advantage that the 

volatility unit is a percentage, confirming with the market conventions. 

 4.2. Modeling of an “artificial” Short-Rate Process 
 
In this chapter we describe a model of interest rates that can be used to value any 

interest-rate-sensitive security. In explaining how it works, we concentrate on valuing 

options on Treasury bonds. We want to examine how the model works in an imaginary 

world in which changes in all bond yields are perfectly correlated, expected returns on 

all securities over one period are equal, short rates at any time are lognormally 

distributed and there are neither taxes nor trading costs. 

We can value a zero bond of any maturity (providing our tree of future short rates goes 

out far enough) using backward induction. We simply start with the security’s face 

value at maturity and find the price at each node earlier by discounting future prices 

using the short rate at that node. The term structure of interest rates is quoted in yields, 

rather than prices. Today’s annual yield, y, of the N-zero in terms of its price, S, is given 

by the y that satisfies the following equation (1). Similarly the yields (up and down) one 

year from now corresponding to the prices Su and Sd are given by equation (2). 

 

Ny
S

)1(
100
+

=    (1),     1
,

, )1(
100

−+
= N

du
du y

S    (2) 

 

We want to find the short rates that assure that the model’s term structure matches 

today’s market term structure. Using Table II we can illustrate how to find short rates 

one period in the future.6 

 

Maturity (yrs) Yield (%) Yield Volatility (%) 
 1 10 20 
2 11 19 
3 12 18 
4 12.5 17 
5 13 16 

  Table II  — A Sample Term Structure 
 

 

 

                                            
6 Example is taken from Black, Derman and Toy (1990), pp.33-39 
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The unknown future short rates ru and rd should be such that the price and volatility of 

our two-year zero bond match the price and volatility given in Table II. We know that 

today’s short rate is 10 per cent. Suppose we make a guess for ru and rd assuming that 

ru=14.32 and rd=9.79, see Figure I a. A two-year zero has a price of EUR 100 at all 

nodes at the end of the second period, no matter what short rate prevails. We can find 

the one-year prices by discounting the expected two year prices by ru and rd; we get 

prices of EUR 87.47 and EUR 91.08, see Figure I b. Using equation (2) we find that 

yields of 14.32 and 9.79 per cent indeed correspond to these prices. (e.g.  

87.47=100/1+yu, so yu=14.32%). Today’s price is given by equation (1) by discounting 

the expected one-year out price by today’s short rate, i.e. 

(0.5(87.47)+0.5(91.08))/1.1=81.16. We can get today’s yield for the two year zero, y2, 

using equation (1) with today’s price as S.  

 

Figure I — Finding out the One-Year Short Rates (using a two-year zero) 

 
(a) Rate Tree  

(Guessed values) 
(b) Price Tree 

(Discounting the price at maturity with ru 
and rd to get the prices in t=1; then 
discounting these using today’s short 
rate in equation (1)) 

(c) Yield Tree 
Using equation 2 to calculate 
the yields in t=1, for today :
81.16=100/(1+y)2 

 

The volatility of this two year yield is defined as the natural logarithm of the ratio of the 

one-year yields : %19
2

ln 79.9
33.14

2 ==σ .  

With the one-year short rates we have guessed, the two-year zero bond’s yield and 

yield volatility match those in the observed term structure of Table II. This means that 

our guesses for ru and rd were right. Had they been wrong, we would have found the 

correct ones by trial and error. 

So an initial short rate of 10 per cent followed by equally probable one-year short rates 

of 14.32 and 9.79 per cent guarantee that our model matches the first two years of the 

term structure. 

10 

9.79 

14.32 

81.16

91.08

87.47

100

100

100

11 

9.79 

14.32 
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Valuing Options on Treasury Bonds  

We can use the model to value a bond option. But before we can value Treasury bond 

options, we need to find the future prices of the bond at various nodes on the tree. For 

our example shown in Figure II and III, we consider a Treasury with a 10 per cent 

coupon, a face value of EUR 100 and three years left to maturity. The application of the 

BDT model provided us with the short rates, which are shown in Figure II a.  

Figure II — Valuation of a portfolio of three zeroes  
 

 

For convenience, we can consider this 10 per cent Three-year Treasury as a portfolio of 

three zero-coupon bonds7. See Figure II panels (b, c, d). The tree shown in panel (a) 

was built, the same way as explained in the previous section of this paper, to value all 

zero’s according to today’s yield curve. Figure III a below shows the price of the 10 per 

cent Treasury as the sum of the present values of the zeroes — EUR 95.51. The tree in 

Figure III b shows the Three-year Treasury prices obtained after subtracting EUR 10 of 

accrued interest on each coupon date. 

 

Figure III — Three-Year Treasury Values 

 

 

                                            
7 a one-year zero with face-value of EUR 10, a two-year zero with a EUR 10 face-value and a three-year 
zero with a EUR 110 face-value 

10 

14.32 

9.79 

19.42 

13.77 

9.76 

9.09 

10 

10 

8.12

8.75

9.11

10

10

10

78.30

82.58 

89.68 

92.11 

96.69 

100.22 

110

110

110

110 

(a) BDT Short Rates 

(b) One-Year Zero

(c) Two-Year Zero
(d) Three-Year Zero 

95.51 

101.33 

108.79 

102.11

106.69

110.22

110 

110 

110 

110 

95.51

91.33 

98.79 

92.11 

96.69 

100.22 

100

100

100 

100
(a) Present Value of Portfolio
(Fig. II b+c+d = 3-year-treasury) 

(b) Price (Present Value of 3-year-
treasury less accrued interest) 
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Having found a price for the Treasury — EUR 95.51. We can easily value options on this 

security — e.g. a two-year European call and put struck at EUR 95. The process is shown 

in Figure IV. At expiration the difference between the bond’s price and the strike price 

is calculated to get the calls (vice versa- the puts) value. Is the option out of the money, 

its value is zero. To get the possible values one-year before expiration we discount with 

the short rate for that period. For example 15.3
%79.91

)22.5(5.0)69.1(5.0 =
+

+
 

Figure IV — Two-Year European Options on a Three-Year Treasury 
 

 

We have price European-style options by finding their values at any node as the 

discounted expected value one step in the future. American-style options can be 

valued in a similar manner with little extra effort. 

In the beginning of this chapter we outlined the approach taken by Black, Derman and 

Toy in their original publication8 of their model. They indicate a trial and error procedure, 

without providing any hints to facilitate the guessing game. Jamishidian 9  (1991) 

improved the implementation of the original BDT model by implementing state-

contingent prices and forward induction to construct the short interest rate tree. 

Bjerksund and Stensland10 developed an alternative to Jamshidian’s forward induction 

method which proves to be even more efficient. With the help of two formulas they 

provide a closed form solution to the calibration problem. Given the initial yield and 

volatility curves a bond price tree is modeled that helps to approximate the short 

interest rate tree. The idea is to use information from the calculated tree to adjust input, 

which is used to generate a new tree by the two approximation formulas. Avoiding 

iteration procedures they assure shorter computation times and accurate results. 

                                            
8 Black, Derman and Toy “A One-Factor Model of Interest Rates and Its Application to Treasury Bond 
Options”, Financial Analysts Journal, Jan-Feb 1990, pp.33-39 
9 Jamshidian, “Forward Induction and Construction of Yield Curve Diffusion Models”, Journal of Fixed 
Income, June 1991, pp.62-74 
10 Bjerksund, Stensland “Implementation of the Black-Derman-Toy Model”, Journal of Fixed Income, 
Vol.6(2), Sept 1996, pp.66-75 
 

95.51 

91.33 

98.79 

92.11 

96.69 

100.22 

100

100

100

100

10 

14.32

9.79
1.77

0.74

3.15

0*

1.69

5.22

(c) Call Value Tree
max(0; S-X) 

0.57 

1.26 

0* 

2.89 

0* 

0* 

(d) Put Value Tree
max(0; X-S) 

(b) Rate Tree

(a) Price 

(* … out of the money)
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4.3. The BDT-Model and Reality 

The BDT model offers in comparison to the Ho-Lee model more flexibility. In the case 

of constant volatility the expected yield of the Ho-Lee model moves exactly parallel, 

but the BDT model allows more complex changes in the yield-curve shape. 

 

Figure V — short rate 11 
 

 

The short rate can be calculated by 

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )downrupr

downBupB
downrupr
downAupA

downBupB
downAupA

−
−
−
−

=
−
−

 

From the equation above (right side) we can easily derive the sensitivity of Bond prices 

of different maturities to changes in the short rates.12  

The sensitivity of the short rates is strongly dependent on the shape of the yield curve. 

Upward sloping term structure tend to produce an elasticity above 1. 

It must be stressed that using BDT, which is a one-factor model, does not mean that 

the yield curve is forced to move parallel. The crucial point is that only one source of 

uncertainty is allowed to affect the different rates. In contrast to linearly independent 

rates, a one factor model implies that all rates are perfectly correlated. Of course, rates 

with different maturity are not perfectly correlated. One factor models are brutally 

simplifying real life. So two (or three) factor models would be a better choice to match 

the rates. 13 

                                            
11 See Rebonato (2002) p.265 
12 See Rebonato (2002) p.264 
13 Francke (2000) p.11-14 

r(0,0) 

B(up)
A(up) 
r(up) 

r(down)
A(down) 
B(down) 

t=0 t=1
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Mainly three advantages using one factor models rather than two or three factor 

models can be mentioned: 

1. It is easier to implement 

2. It takes much less computer time 

3. It is much easier to calibrate 

The ease of calibration to caps is one of the advantages in the case of the BDT model. It 

is considered by many practitioners to outperform all other one-factor models. 

The BDT model suffers from two important disadvantages14: 

• Substantial inability to handle conditions where the impact of a second factor 

could be of relevance because of the one-factor model 

• Inability to specify the volatility of yields of different maturities independently of 

future volatility of the short rate 

An exact match of the volatilities of yields of different maturities should not be 

expected and, even if actually observed, should be regarded as a little more than 

fortuitous.  

Another disadvantage of the BDT model is that the fundamental idea of a short rate 

process, that follows a mean reversion, does not hold under the following circumstance. 

If the continuous time BDT risk neutral short rate process has the form: 

( ) ( ) ( ) ( )[ ]{ } ( ) ( )tdztdttrtfttrd ⋅+⋅−⋅+= σψθ lnln ,  

where: 

( )tu .. is the median of the short rate distribution at time t 

( ) ( )
t

tut
∂

∂= lnθ  

( )
t

tf
∂

∂−= σln,  

( ) ( )tut ln=ψ  

For constant volatility ( const=σ ), 0, =f , the BDT model does not display any mean 

reversion. 

Furthermore we have to note that volatility term structures are not necessary the same 

for different markets. The BDT model is for example used in the US- and the European 

market where cap volatilities are declining rather smoothly possibly after an initial 

hump. This is not the case for the Japanese cap volatilities, which decrease rapidly with 

option maturity. See Figure VI. 
                                            
14 See Rebonato (2002) p.268 
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Figure VI - Different cap volatility term structure for the European and the Japanese markets 

 

 

It would not be appropriate to use the BDT model in the Japanese market, because of 

the sharp decrease in volatility which would imply that we have more information 

about a future time period than about an earlier time period, which is not correct.15  

 5. Implementation and Application of the BDT-Model 

In this chapter we want to outline the implementation of the BDT model using a 

spreadsheet. To match our model to the observed term structure we need a 

spreadsheet package that includes an equation-solving routine16 . The spreadsheet 

equation takes advantage of the forward equation and is an appropriate method when 

the number of periods is not large. 

A simple way17 of writing our model is to assume that the values in the short rate (rks) 

lattice are of the form  sb
kks

kear =  

We index the nodes of a short rate lattice according to the format (k,s), where k is the 

time (k=0,1,…,n) and s is the state (s=0,1,…,k). Here ak is a measure of the aggregate 

drift, bk represents the volatility of the logarithm of the short rate from time k-1 to k. 

Many practitioners choose to fit the rate structure only18, holding the future short rate 

volatility constant19. So in the simplest version of the model, the values of bk are all 

equal to one value b. The ak’s are then assigned so that the implied term structure 

matches the observed term structure.  

 

                                            
15 For further details see Francke (2000), pp.13-14 
16 For our demonstration we used Microsoft Excel and its “Solver”  
17 See Luenberger (1998), p.400 
18 For a justification of this see Clewlow and Strickland (1998) Section 7.7. (pp.222-223)  
19  The convergent continuous time limit as shown on page 7 therefore reduces to the following 
equation : d ln r = θ(t) dt + σ dz . This process can be seen as a lognormal version of the Ho and Lee 
model. 
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(Step 1) We get the data of a yield curve and paste it into Excel.20 To match it to our 

BDT model, we have to make assumptions concerning volatility. For our case we 

suppose to have measured the volatility to be 0.01 per year, which means that the 

short rate is likely to fluctuate about one percentage point during a year. (Inputs are 

shown with grey background in Figure VII a) 

(Step 2) We introduce a row for the parameters ak. These parameters are considered 

variable by the program. Based on these parameters the short rate lattice is constructed. 

We can enter some values close to the observed spot rate, so we can neatly see the 

development of the lattices. What we have done so far is shown in Figure VII a. 

(Step 3)  We use the BDT model (
sb

kks ear = ) to construct our short rate lattice.  

(Step 4) Using the short rates (shown in Figure VII b) we can construct a new lattice for 

the elementary prices/state prices with the forward equations21 shown below. 

(Here dk,s-1 and dk,s are the one period discount factors (determined from the short rates 

at those nodes).  

Three equations for the forward recursion : 

 - For the middle branch :  [ ]),()1,(),1( 0,01,2
1

0 skPdskPdskP sksk +−=+ −  

 - For going down :  )0,()0,1( 00,2
1

0 kPdkP k=+  

 - For going up :  ),()1,1( 0,2
1

0 kkPdkkP kk=++  

(Step 5) The sum of the elements in any column gives us the price of a zero-coupon 

bond with maturity at that date. From these prices the spot rates can be directly 

computed. (Figure VII d) 

(Step 6) We introduce one more row for the (squared) difference between the observed 

spot rate and the one that we just computed.  

(Step 7) Now we run the equation-solving routine, which adjusts the a values until the 

sum of errors is minimized, i.e. until the calculated spot rate equals the assumed spot 

rate in the second row. 

(Step 8) We can now use the results for valuing interest rate contingent derivatives 

such as bond options, caps, floors, swaptions. 

                                            
20 In our case we obtained the spot rate curve from the ÖKB website (http://www.profitweb.at/apps/ 
yieldcourse/index.jsp). 
21 The method of Forward induction was first introduced by Jamishidian (1991). 
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Figure VII — Using a spreadsheet program to implement the BDT model 

Year 0 1 2 3 4 5 6 7 8 9 10 
Spot rate   I 2,83 2,9 3,22 3,62 4,01 4,35 4,64 4,88 5,08 5,12  

a 2,83 2,940 3,786 4,686 5,365 5,770 6,023 6,130 6,178 4,916  
b 0,020           

(a) 

State                     
9   short rates       5,89 
8   (Black, Derman and Toy)    7,25 5,77 
7         7,05 7,11 5,66 
6        6,79 6,91 6,97 5,54 
5       6,38 6,66 6,77 6,83 5,43 
4      5,81 6,25 6,52 6,64 6,69 5,33 
3     4,98 5,70 6,13 6,40 6,51 6,56 5,22 
2    3,94 4,88 5,58 6,01 6,27 6,38 6,43 5,12 
1   3,00 3,86 4,78 5,47 5,89 6,14 6,25 6,30 5,02 
0 2,83 2,94 3,79 4,69 5,36 5,77 6,02 6,13 6,18 4,92 

(b) 

State                     0,001 
9   state prices        0,001 0,006 
8   (through forward induction)    0,003 0,011 0,026 
7         0,006 0,021 0,045 0,070 
6        0,012 0,039 0,074 0,104 0,124 
5       0,026 0,072 0,119 0,149 0,157 0,150 
4      0,054 0,128 0,181 0,199 0,187 0,158 0,125 
3     0,114 0,217 0,256 0,242 0,199 0,150 0,106 0,072 
2    0,236 0,341 0,325 0,257 0,182 0,120 0,075 0,046 0,027 
1   0,486 0,472 0,341 0,217 0,129 0,073 0,040 0,022 0,011 0,006 
0 1,000 0,486 0,236 0,114 0,054 0,026 0,012 0,006 0,003 0,001 0,001 

(c) 

P(0,k) 1,000 0,972 0,944 0,909 0,867 0,822 0,775 0,728 0,683 0,640 0,607 
Spot rate   II  2,83 2,9 3,22 3,62 4,01 4,35 4,64 4,88 5,08 5,12 

Errors  7E-14 1E-13 2E-12 1E-11 1E-10 5E-10 1E-09 9E-10 5E-10 6E-11 
Sum of errors 3E-09          

(d)  

 
The implementation in a Microsoft Excel spreadsheet can be found on a floppy disc 

attached to this seminar paper. (Please enable macros and the add-in “Solver”.) 
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6. List of Symbols and Abbreviations 

 
a  mean reversion factor 

( )TtP ,  value (price) of the zero bond at time t with maturity time T 

σ  short rate volatility 

µ  drift of the short rate 

( )tΦ  time various drift in Hull-White model 

t time 

T time at maturity  

dr infinitesimal increment in short rate 

dt infinitesimal increment of time 

dz infinitesimal increment in a standard Wiener Process 

Π  risk neutral Martingale measure 

Φ  forward measure 

( )TtF ,  forward rate at time t to time T 

K strike or exercise price of a contingent claim 

S asset price 

r continuous or simply compounded interest rate over one time step 

θ(t) time dependent drift 

rks short rate in time k and state s in the lattice 

a aggregate drift 

b volatility of the logarithm of the short rate 

k time in the lattice  

s state in the lattice 

dk,s-1 , 

dk,s 

one period discount factors of the forward equation 
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